翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ergometer (rowing) : ウィキペディア英語版
Indoor rower

An indoor rower, or rowing machine, is a machine used to simulate the action of watercraft rowing for the purpose of exercise or training for rowing. Indoor rowing has become established as a sport in its own right. The term also refers to a participant in this sport.
Modern indoor rowers are often known as ergometers (colloquially erg or ergo), an ergometer being a device which measures the amount of work performed. The indoor rower is calibrated to measure the amount of energy the rower is using through their use of the equipment.
==History==

Chabrias, an Athenian admiral of the 4th century BCE, introduced the first rowing machines as supplemental military training devices. "To train inexperienced oarsmen, Chabrias built wooden rowing frames on shore where beginners could learn technique and timing before they went on board ship." 〔"Lords of the Sea: The Epic Story of the Athenian Navy and the Birth of Democracy", John R. Hale〕
Early rowing machines are known to have existed from the mid-1800s, a US patent being issued to WB Curtis in 1872 for a particular hydraulic based damper design. Machines using linear pneumatic resistance were common around 1900—one of the most popular was the Narragansett hydraulic rower, manufactured in Rhode Island from around 1900–1960. However they did not simulate actual rowing very accurately nor measure power output.
In the 1950s and 1960s, coaches in many countries began using specially made rowing machines for training and improved power measurement. One original design incorporated a large, heavy, solid iron flywheel with a mechanical friction brake, developed by John Harrison of Leichhardt Rowing Club in Sydney, later to become a professor of mechanical engineering at the University of New South Wales. Harrison, a dual Australian Champion Beach Sprinter who went on to row in the coxless four at the 1956 Melbourne Olympics, had been introduced to rowing after a chance meeting with one of the fathers of modern athletic physiological training and testing, and the coach of the Leichhardt ''Guinea Pigs'', Professor Frank Cotton. Professor Cotton had produced a rudimentary friction-based machine for evaluating potential rowers by exhausting them, without any pretence of accurately measuring power output. Harrison realised the importance of using a small braking area with a non-absorbent braking material, combined with a large flywheel. The advantage of this design (produced by Ted Curtain Engineering, Curtain being a fellow Guinea Pig) was the virtual elimination of factors able to interfere with accurate results—for instance ambient humidity or temperature. The Harrison-Cotton machine represents the very first piece of equipment able to accurately quantify human power output; power calculation within an accuracy range as achieved by his machine of less than 1% remains an impressive result today. The friction brake was adjusted according to a rower's weight to give an accurate appraisal of boat-moving ability (drag on a boat is proportional to weight). Inferior copies of Harrison's machine were produced in several countries utilising a smaller flywheel and leather straps—unfortunately the leather straps were sensitive to humidity, and the relatively large braking area made results far less accurate than Harrison's machine. The weight correction factor tended to make them unpopular among rowers of the time. Harrison, arguably the father of modern athletic power evaluation, died in February 2012.〔http://wayback.archive.org/web/20061110031520id_/http://www.worldrowing.com/index.php?pageid=44〕
In the 1970s, the Gjessing-Nilson ergometer from Norway used a friction brake mechanism with industrial strapping applied over the broad rim of the flywheel. Weights hanging from the strap ensured that an adjustable and predictable friction could be calculated. The cord from the handle mechanism ran over a helical pulley with varying radius, thereby adjusting the gearing and speed of the handle in a similar way to the changing mechanical gearing of the oar through the stroke, derived from changes in oar angle and other factors. This machine was for many years the internationally accepted standard for measurement.
The first air resistance ergometers were introduced around 1980 by Repco.
The Concept2 ergometer was introduced in 1980 by the Dreissigacker brothers. The first, the Model A, was a fixed-frame sliding-seat design using a bicycle wheel with fins attached for air resistance. The Model B, introduced in 1986, introduced a solid cast flywheel (now enclosed by a cage) and the first digital performance monitor, which proved revolutionary. This machine's capability of accurate calibration combined with easy transportability spawned the sport of competitive indoor rowing, and revolutionised training and selection procedures for watercraft rowing. The later Models C (1993) and D (2003) became some of the best-selling fitness equipment pieces of all time.〔http://www.rowinghistory.net/Equipment.htm〕〔http://indoorsportservices.co.uk/company/history〕〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Indoor rower」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.